

ENDOPARASITES OF CHAMOIS AT THE AREA OF GORSKI KOTAR - PRELIMINARY RESULTS

D. Konjević, N. Šprem, P. Gančević, D. Banuls, M. Bujanić, F. Martinković

University of Zagreb, Veterinary and Agricultural faculty

INTRODUCTION

- Croatian Science Foundation grant "DNA as evidence of distribution and vitality of threatened Balkan chamois"
- Active surveillance
- Understanding of parasite fauna

MATERIAL AND METHODS

- Location Gorski kotar
- Complete GI system of 12 chamois (2 females)
- Samples were analyzed according to segments: duodenum, ileum, jejunum, caecum and colon (colon and rectum)
- Intestines were incised longitudinally, washed out and content was analyzed in sieves with different mesh size (0.5 and 0.2 mm)

MATERIAL AND METHODS

- Parasites were stored in Eppedorf vials
- Sample of faeces was submited for standard coprological examination and IF for Giardia sp.
- Cysts found on mesenterium were collected and stored till determination of genus and species

RESULTS

		Abomasum		Colon	Other		
		H. contortus	Trichuris ovis	Chabertia ovina	Oesophagostomum venulosum	Cysticercus tenuicollis	Parasites
Rupicapra rupicapra	DK1		Χ		Χ		Χ
	DK2				Χ		X
	DK3						
	DK4		Χ	Χ	Χ	X	X
	DK5		Χ		Χ		X
	DK6	Χ			Χ		X
	DK7				Χ	X	X
	DK8					X	X
	DK9				Χ	X	X
	DK10		Χ	Χ			Χ
	DK11	Χ			×		X
	DK12						
Prevalence		17%	33%	17%	67%	33%	83%

RESULTS

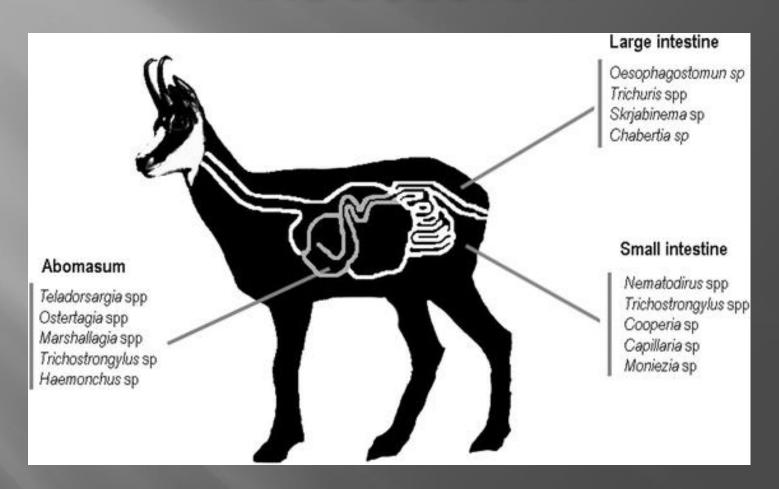
Rupicapra rupicapra		Protostrongylidae	Strongylida	T. ovis	Eimeria sp.	Capillaria sp.	Nematodirus sp.	Marshallagia marshalli	Parasites
	DK1								BU
	DK2								BU
	DK3		X			X			X
	DK4	X	X						X
	DK5			X			X		X
	DK6	X							X
	DK7						X		X
	DK8	X			Χ				Χ
	DK9	X					X	Χ	Χ
	DK10	X			Χ				Χ
	DK11	X							Χ
	DK12								
Prev	alence	60%	20%	10%	20%	10%	30%	10%	90%

RESULTS

- Most frequent nematodes
- Trematodes were not detected
- Cestodes were present only as developmental stages
- All samples were negative for *Giardia* sp. –
 prevalence in Alpine population was 4%

- *Haemonchus contortus* was determined in available stomachs.
- Adult trichostrongylids were not found, eggs were present in 2 samples (20%)
- Studies performed in Switzerland showed that strongylid eggs can be found in almost 90% of faecal samples

- Haemonchosis is mainly acute or chronic disease.
- Acute severe anaemia, generalized oedema
- Chronic anaemia, progressive weight loss


- Parasites of the large intestine
- Trichuris ovis, Chabertia ovina, Oesophagostomum venulosum
- □ Obtained results are in accordance with similar research in the case of *Oesophagostomum* (P = 67%), but with higher prevalence of *T. ovis* (P=33%) and *C. ovina* (P=17%)

- Generally, these parasites do not cause any disease
- In severe infestations *T. ovis* are known to induce bloody diarrhoea, dehydration and loss of apetite

- □ Only eggs of Nematodirus sp. (P=30%),
 Capillaria sp. (P=10%) and Marshallagia marshalli
 (P=10%) were determined
- 60% of feacal samples contained lungworm larvae, most probably of the genus Muellerius (Neostrongylus, Protostrongylus).
- Implications for young animals –*Nematodirus* nematodes are capable of inducing profuse diarrhoea; small lungworms are cause of bronchopneumonia, but mainly of bronchitis with weak clinical signs

Martínez-Guijosa et al. (2015): Parasites & Vectors 8:165

- Finding of *Cysticercus tenuicollis*, developmental stages of *Taenia hydatigena* (P=33%)
- Studies of parasitic fauna of grey wolves in Gorski kotar and Velebit region confirmed the presence of *T. hydatigena* eggs in only 1.5% of samples
- Further research is required to enlighten the role of chamois in life cycle of *T. hydatigena*

Thanks for attention

